
Attention with Multiple Sources Knowledges for COVID-19 from CT Images

Duy M. H. Nguyen,1, 5 Duy M. Nguyen, 2 Huong Vu, 3 Binh T. Nguyen 4

Fabrizio Nunnari, 1 Daniel Sonntag1

1 German Research Center for Artificial Intelligence, Saarbrücken, Germany
2 School of Computing, Dublin City University, Ireland

3 University of California, Berkeley
4 VNUHCM-University of Science, Ho Chi Minh City, Vietnam

5 Max Planck Institute for Informatics, Germany

Abstract

Until now, Coronavirus SARS-CoV-2 has caused more than
850,000 deaths and infected more than 27 million individu-
als in over 120 countries. Besides principal polymerase chain
reaction (PCR) tests, automatically identifying positive sam-
ples based on computed tomography (CT) scans can present
a promising option in the early diagnosis of COVID-19. Re-
cently, there have been increasing efforts to utilize deep net-
works for COVID-19 diagnosis based on CT scans. While
these approaches mostly focus on introducing novel architec-
tures, transfer learning techniques, or construction large scale
data, we propose a novel strategy to improve the performance
of several baselines by leveraging multiple useful information
sources relevant to doctors’ judgments. Specifically, infected
regions and heat maps extracted from learned networks are
integrated with the global image via an attention mechanism
during the learning process. This procedure not only makes
our system more robust to noise but also guides the network
focusing on local lesion areas. Extensive experiments illustrate
the superior performance of our approach compared to recent
baselines. Furthermore, our learned network guidance presents
an explainable feature to doctors as we can understand the
connection between input and output in a grey-box model.

Introduction
Coronavirus disease 2019 (COVID-19) is a dangerous infec-
tious disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) (Coronaviridae Study Group of
the International Committee on Taxonomy of Viruses 2020).
It was first recognized in December 2019 in Wuhan, Hubei,
China, and continually spread to a global pandemic. Accord-
ing to statistics at Johns Hopkins University (JHU), until the
end of August 2020, COVID-19 caused more than 850,000
deaths and infected more than 27 million individuals in over
120 countries1. Among the COVID-19 measures, the reverse-
transcription-polymerase chain reaction (RT-PCR) is regu-
larly used in the diagnosis and quantification of RNA virus
due to its accuracy. However, this protocol requires functional
equipment and strict requirements for testing environments,
limiting the rapid and accurate screening of suspected sub-
jects. Further, RT-PCR testing also is reported to suffer from

1https://coronavirus.jhu.edu/map.html

high false-negative rates (Ai et al. 2020). For complementing
RT-PCR methods, testings based on visual information as
X-rays and computed tomography (CT) images are applied
by doctors and have demonstrated effectiveness in current
diagnoses, including follow-up assessment and prediction of
disease evolution (Rubin et al. 2020). For instance, a hospital
in China utilized chest CT for 1014 patients and achieved
0.97 of sensitivity, 0.25 of specificity compared to RT-PCR
testing (Ai et al. 2020). Fang et al. 2020 also showed evi-
dences of abnormal CT compatible with an early screening
of COVID-19. Ng et al. 2020 conducted a study on patients
at Shenzhen and HongKong and found that COVID-19’s
pulmonary manifestation is characterized by ground-glass
opacification with occasional consolidation on CT. Generally,
these studies suggest that leveraging medical imaging may
be valuable in the early diagnosis of COVID-19.

There have been several deep learning-based systems pro-
posed to detect positive COVID-19 on both X-rays and CT
imaging. Compared to X-rays, CT imaging is widely pre-
ferred due to its merit and multi-view of the lung. Further-
more, the typical signs of infection could be observed from
CT slices, e.g., ground-glass opacity (GGO) or pulmonary
consolidation in the late stage, which provide useful and im-
portant knowledge in competing against COVID-19. Recent
studies focused on three main directions: introducing novel
architectures, transfer learning methods, and building up a
large scale for COVID-19. For the first category, the novel net-
works are expected to discriminate precisely between COVID
and non-COVID samples by learning robust features and less
suffering with high variation in texture, size, and location
of small infected regions. For an example, Wang et al. 2020
proposed a modified inception neural network (Szegedy et al.
2015) for classifying COVID-19 patients and normal controls
by learning directly on the regions of interest, which are iden-
tified by radiologists based on the appearance of pneumonia
attributes instead of training on entire CT images. Gozes et al.
2020 and Li et al. 2020 extended the ResNet50 architecture
to spot COVID-19 given sequences of chest CT images in 3D
dimension. Although these methods could achieve promising
performance, the limited samples could potentially simply
over-fit when operating in real-world situations. Thus, in
the second and third directions, researchers investigated sev-
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eral transfer learning strategies to alleviate data deficiency
(He et al. 2020) and growing data sources to provide more
large-sized datasets while satisfying privacy concerns and
information blockade (Cohen, Morrison, and Dao 2020; He
et al. 2020).

Unlike recent works, we aim to answer the question: “how
can we boost the performance of existing COVID-19 diagno-
sis algorithms by exploiting other source knowledge relevant
to a radiologist’s decision?”. Specifically, given a baseline
network, we expect to improve its accuracy by incorporat-
ing two other knowledge: an infected and a heat map region
without modifying its architecture. In our settings, infected
regions refer to positions of Pulmonary Consolidation Region
(PCR) (as shown in Figure 1 at the middle, green regions),
a type of lung tissue filling with liquid instead of air; and
Ground-Glass Opacity (GGO), an area of increased attenua-
tion in the lung on CT images with preserved bronchial and
vascular markings (as depicted in Figure 1 at the middle, red
regions). By quantifying those regions, the radiologists can
distinguish normal and infected COVID-19 tissues. While
infected areas are based on medical knowledge, we refer heat
map (as shown in Figure 1 at the right-hand side) as a re-
gion extracted from a trained network, which allows us to
understand transparently essential parts in the image directly
impact the network decision. Our motivation comes from two
challenges we observed:

• First, to detect infected COVID-19 patients, clinicians take
a look at the high level of CT images. They then exam-
ine the local lesion area. Finally, a radiologist can com-
prehensively consider both global, local information and
their prior knowledge as dealing in previous cases to make
final judgments. Comparing this idea with learning an au-
tonomous system, while the global features can be derived
by training deep networks on entire images, the local and
prior knowledge are missing parts in recent works. Thus,
we complement it by incorporating infected regions and
heat maps and integrating those components during the
training process.

• Second, a learning approach using solely global images
can suffer from two difficulties. One the one hand, it tends
to contain a significant level of noise outside the lesion
area. For instance, in figure 1 (right), the lesion area in
some conditions can be relatively small (red bounding
box) compared with the healthy outside region. Thus, this
property makes deep networks hard to focus on the local
lesion area and could not be localized precisely positions
of disease regions. Furthermore, due to the large inter-
class similarity of chest X-ray images, it is challenging
to identify the subtle discrepancies of separate classes in
the whole images, especially as the critical lesion areas
are tiny. By considering these facts, it is crucial to have an
attention mechanism to supervise the network such that it
can take both lesion regions and global visual information
into account for a final decision.

In order to tackle these challenges, this paper introduces a
novel fashion to integrate all visual cues via a triplet stream
network followed by a fusion branch for diagnosing COVID-
19 disease without changing baseline networks’ structures.

Figure 1: Left: the picture of a COVID-19 case. Middle: red
and green labels indicate the Ground-Glass Opacity (GGO)
and Pulmonary Consolidation regions (Fan et al. 2020). Right:
heatmap region extracted from trained network.

Our architecture is highlighted in two attributes. First, it has
two dedicated local branches to focus on local lesion re-
gions, one for infected and another for heatmap areas. In this
manner, the influence of the noise in the non-disease areas
and missing essential structures can be alleviated. Second,
our principal branches, i.e., a global branch and two local
branches, are connected by a fusion branch. While the lo-
cal branches represent the attention mechanism, it may lead
to information loss in cases where the lesion areas are scat-
tered in the whole image. Therefore, a global component is
demanded to compensate for this error. We reveal that the
global and local branches complement each other by the fu-
sion branch, which shows better performance than the current
state-of-the-art.

Our contributions can be summarized as follows:

• We provide a new procedure to advance baselines on
COVID-19 diagnosis without modifying the network’s
structures by integrating knowledge relevant to radiolo-
gists’ judgment as examining a suspected patient. Exten-
sive experiments demonstrate that the proposed method
can boost several cutting-edge models’ performance, yield-
ing a new state-of-the-art achievement.

• We show the transparency of learned features by embed-
ding the last layer’s output vector in the fusion branch
to smaller space and visualizing in a 3-D dimension
(as shown in Figure 3). Interestingly, the data points in
COVID-19 and non-COVID cases can be distinguished
with our proposed method. Furthermore, we found a strong
connection between input features and network decisions
as mapping with activation heatmap and infected regions.
Such property is a critical point for clinicians as end-users,
as they can interpret how networks create a result given
input features in a grey-box rather than a black-box algo-
rithm.

Related Works
In this section, we review two topics that are most relevant
to our work, namely Diagnosis in Chest CT and Artificial
Intelligence based Applications for COVID-19.

Diagnosis in Chest CT
In a global effort against COVID-19, the computer vision
community pays attention on constructing efficient deep



learning approaches to perform screening of COVID-19 in
CT scans. Zheng et al. 2020 pioneered in introducing a novel
3D-deep network (DeCoVNet) composed from pre-trained
U-net (Ronneberger, Fischer, and Brox 2015) and two 3D
residual blocks. To reduce annotating costs, the authors em-
ployed weakly-supervised based computer-aided COVID-19
detection with a large number of CT volumes from the front-
line hospital. Other methods also applied 3D deep networks
for CT images can be found in (Gozes et al. 2020; Li et al.
2020). In other trends, Song et al. 2020 developed CT diag-
nosis to support clinicians to identify patients with COVID-
19 based on the presence of Pneumonia feature. Shan et al.
2020 and Shi et al. 2020 pursue a strategy of improving ac-
curacy by proposing new architectures such as “VB-Net”,
infection-size-aware Random Forest (iSARF). To mitigate
data deficiency, Xuehai He et al. 2020 builded a publicly-
available dataset containing hundreds of CT scans that are
positive for COVID-19 and introducing a novelty sample-
efficient method based on both pre-trained ImageNet (Deng
et al. 2009) and self-supervised learning (Chen et al. 2020).
In the same effort, Joseph Paul Cohen et al. 2020 also con-
tributes open image data collection, which was created by
assembling medical images from websites and publications.

Artificial Intelligence based Applications for
COVID-19

Artificial intelligence has been applied in a large number of
treatments against COVID-19 (Dong et al. 2020; Oh, Park,
and Ye 2020). Generally, these applications can be divided
into three main directions: societal range (e.g., epidemiol-
ogy Hu et al., 2020), molecular range (e.g., protein structure
analytic (Senior et al., 2020)) and patient scale (e.g., med-
ical imaging for diagnosis from CT or X-ray (Wang et al.
2020; Chen et al. 2020)). In this research, we focus on patient
range applications (Butt et al. 2020; Shan et al. 2020), espe-
cially those based on CT slices. Besides algorithms dedicated
to diagnosis COVID-19, deep learning has been employed
successfully to segment infection regions in lung CT slices
so that the resulting quantitative features can be utilized for
different purposes. For instance, Tang et al. (2020) showed
that the volume and ratio of infected regions (ground-glass
opacity) are positively related to the severity of COVID-19.
Furthermore, quantitative features calculated from the right
lung are more related to the severity assessment than those
of the left lung. Shi et al. 2020 evaluated different ranges
of infected lesion sizes to apply for an extensive study of
1658 COVID-19 patients. Rajinikanth et al. (2020) tried to
identify the COVID-19 disease by scanning for signs of pneu-
monia in the lung using CT scans. While recent networks
only tackle in a sole target, e.g., only diagnosis or compute
infected regions. In contrast, we bring those components into
a single system by fusing straight infected areas and global
images throughout the learning-network procedure so that
these sources can support each other to make our model more
robust and efficient. In terms of features, forcing the network
to learn on local branches with infected regions can be con-
sidered an attention mechanism. Here, the network always
takes account of extracted features from these local branches.

Methodology
In this section, we first describe all visual sources used as
system input in Fusion with Multiple Knowledge, then intro-
ducing in detail how to design our architecture and method
employed for training in Network Design and Implementation
subsection.

Fusion with Multiple Knowledge
Infected Branch In Fan et al. 2020, authors developed
methods to identify lung areas that are infected by ground-
class opacity and consolidation by presenting a novel archi-
tecture, namely Inf-Net. Its operations are built through a
parallel partial decoder used to aggregate the high-level fea-
tures and generate a global map. Furthermore, by combining
the semi-supervised technique, Inf-Net could achieve a state
of the art performance on segmentation infected region from
CT lung. Given the fact that there is a strong correlation be-
tween the diagnosis of COVID-19 and ground-class opacity
presented in lung CT scans. We, therefore, adopt the Semi-
Infected-Net method from Fan et al. 2020 to localize lung
areas suffered by ground-class opacity and consolidation on
our CT images. In particular, we expect using this quantifi-
cation to reduce focused regions of our model to important
positions, thus making the system learn efficiently.

Following approach based on semi-supervised data in Fan
et al. 2020, we extend it in the diagnosis task by first training
the Inf-Net on D1 dataset (please see Section Data for further
reference). Then, we use this model to obtain pseudo label
segmentation masks for 100 randomly chosen CT images
from D2 and D3 datasets. After that, we combine the newly
predicted masks with D1 as a new training set and re-train
our model. The re-trained model will continue to be used
for segmenting other 100 ones randomly chosen from the
remaining of D2 and D3. Then, we repeated this data com-
bining step. The cycle continues until all images from D2
and D3 have a segmentation mask. We summarize the whole
procedure in Algorithm 1.

Algorithm 1: Training Semi-supervised Infected Net
Input: Dtrain = D1 with segmentation masks and

Dtest = D2 ∪ D3 without masks.
Output: Trained Infected Net model, M

1 Set Dtrain = D1; Dtest = D2 ∪ D3; Dsubtest = NULL
2 while len(Dtest) > 0 do
3 Train M
4 if len(Dtest > 100) then
5 Dsubtest = random ( Dtest\Dsubtest, k = 100)
6 Dtrain = Dtrain ∪M(Dsubtest)
7 Dtest = Dtest\Dsubtest

8 else
9 Dsubtest = Dtest

10 M(Dsubtest)
11 Dtest = Dtest\Dsubtest

Heatmap Branch Besides the whole original scans of CT
images, we wanted our proposed network to pay more at-



Figure 2: The overview of our triplet stream network with a fusion branch to exploit all features. DenseNet169 is used as an
illustration for the baseline network. For all branches, we utilize a binary cross entropy loss function during the training process.

tention to injured regions within each image by building
a heatmap branch, which was a separate traditional classi-
fication structure as DenseNet169 (Huang et al. 2017) or
ResNet50 backbone (He et al. 2016). This additional model
was expected to learn the discriminative information from
a specific CT scan area instead of the entire image, hence
alleviating noise problems.

A lesion region of a CT scan, which could be considered as
an attention heat map, was extracted from the last convolution
layer’s output before computing the global pooling layer of
the backbone (DenseNet169 or ResNet50) in the main branch.
In particular, with an input CT image, let fk(x, y) is the
activation unit in the channel k at the spatial (x, y) of the last
CNN layer, in which k ∈ {1, 2, ...,K} and K = 1644 for
DenseNet169 or K = 2048 for ResNet50 as a backbone. Its
attention heat map, H , is created by normalizing across k
channels of the activation output by using Eq. 1.

H(x, y) =

∑
k fk(x, y)−min(

∑
k fk)

max(
∑

k fk)
(1)

We then binarized H to get the mask B of the suspected
region in Eq. 2, where τ is a tuning parameter whose smaller
value produces a larger mask, and vice versa.

B =

{
1, if H(x, y) > τ

0, otherwise
(2)

We then extracted a maximum connected region in B and
mapped with the original CT scan to get the final input for our
local branch. A typical example for heatmap region can be
seen in Figure 1 at the right-hand side. Given this output and
coupling with infected model M obtaining from Algorithm
1, we now have enough input to start training the proposed
model.

Network Design and Implementation

Multi-Stream network Our method’s architecture can be
illustrated in Figure 2, with DenseNet169 as an example of
the baseline model. It has three principal branches, i.e., the
global and two local branches for attention lesion structures,
followed by a fusion branch at the end. Both the global and lo-
cal branches play roles as classification networks that decide
whether the COVID-19 is present. Given a CT image, the
parameters of Global Branch are first fine-tuned by loading
either pre-trained ImageNet or Self-transfer learning tactics
as in (He et al. 2020), and continue to train on global images.
Then, heatmap regions from the global image extracted us-
ing equations (1) and (2) are utilized as an input to train on
Heatmap Branch. In the next step, input images at the Global
Branch are fed into Infected-ModelM , which is derived after
completing the training procedure in algorithm 1, to produce
infected regions. Because these lesion regions are relatively
small, disconnected, and distributed on the whole image, we
find bounding boxes to localize those positions and divide it
into two sub-regions: left infected and right infected photos.
Those images can be fed into a separate backbone network
to output two pooling layers and then concatenating with
pooling features from the global branch to train for Infected
Branch. It is essential to notice that concatenating output fea-
tures from Infected Branch with global features is necessary
since, in several cases, e.g., in healthy patients, we could not
obtain infected regions. Finally, the Fusion Branch can be
learned by merging all pooling layers from both global and
two local branches.

To be tighter, we assume that each pooling layer
is followed by a fully connected layer FC with C−
dimensional for all branches and a sigmoid layer
is added to normalize the output vector. Let de-
note (Ig,Wg, pg(c|Ig)), (Ih, Wh, ph(c|Ig, Ih)), and



(Iin, Win, pin(c|Ig, Iin)) as pairs of images, param-
eters and probability scores belong to the c-th class,
c ∈ {1, 2 ..., C} at FC layer for global, heatmap and
infected branches, respectively. For fushion branch, we
also denote (Poolk, Wf , pf (c|(Ig, Ih, Iin)) as a pair of
output feature at pooling layer in branch k (k ∈ {g, h, in}),
parameter and probability scores belong to the c-th class of
the fusion branch.

Then, parameters Wg,Wh, and Win are optimized by min-
imizing the binary cross entropy loss as follows:

L(Wi) = −
1

C

C∑
c=1

lc log(p̃i(c)) + (1− lc) log(1− p̃i(c)),

(3)
where lc is the ground-truth label of the c-th class, C is the
total of classes, and p̃i(c) is the normalized output network
at branch i (i ∈ {g, h, in}), which can be computed by:

p̃i(c) = 1/(1 + exp(−pi(c|Ig, Ih, Iin) (4)

in which

pi(c|Ig, Ih, Iin) =

{
pg(c|Ig) if i = g

ph(c|Ig, Ih) if i = h
pin(c|Ig, Iin) if i = in

(5)

For the fusion branch, we have to compute the pooling fu-
sion Poolf by merging all pooling values in all branches:
Poolf = [Poolg, Poolh, Poolin]. After that, we evaluate
pf (c|(Ig, Ih, Iin) by multiplying Poolf with weights at FC
layer. Finally, Wf can be learned by minimizing equation (3)
with formula (4).

Training Strategy Due to the limited amount of COVID-
19 CT scans, it is not suitable to train entire all branches
simultaneously. We thus followed a strategy that trains each
part sequentially to reduce the number of parameters being
trained at once. As a branch finished its training stage, its
weights would be used to initialize the next branches. Our
training protocol can be divided into three stages, as follows:

Stage I: We firstly trained and fine-tuned the global branch,
which used architectures from backbones as DenseNet169 or
ResNet50. The weight initialization can be done by loading
pre-trained ImageNet or Self-Transfer learning method (He
et al. 2020).

Stage II: Based on the converged global model, we then
created attention heat map images to have the input for the
heatmap branch, which was fine-tuned based on the hyper-
parameter τ as described in section Heatmap Branch. At the
same time, we could also train the infected branch indepen-
dently with the heatmap branch using the pooling features
produced by the global model, as illustrated in Figure 2. The
weights of the global model were kept intact during this
phrase.

Stage III: Once the infected branch and the heatmap
branch were fine-tuned, we concatenated their pooling fea-
tures and trained our final fusion branch with a fully con-
nected layer for the classification. All weights of other
branches were still kept frozen while we trained this branch.

The overall training procedure was summarized in Algo-
rithm 2. Different training configurations might affect the

Algorithm 2: Training our proposed system
Input: Input image Ig , Label vector L, Threshold τ
Output: Probability score pf (c|Ig, Ih, Iin)

1 Learning Wg with I, computing p̃g(c|Ig), optimizing by
Eq. 3 (Stage I);

2 Finding attention heat map and its mapped image Ih of
Ig by Eq. 2 and Eq. 1.

3 Learning Wh with Ih, computing p̃h(c|Ig, Ih),
optimizing by Eq. 3 (Stage II);

4 Finding infected images Iin of Ig by using infected
model M ;

5 Learning Win with Iin, computing p̃in(c|Ig, Iin),
optimizing by Eq. 3 (Stage II);

6 Computing the concatenated Poolf , learning Wf ,
computing pf (c|Ig, Ih, Iin), optimizing by Eq. 3
(Stage III).

performance of our system. Therefore, we analyzed this im-
pact from variation training protocol in the subsection Per-
formance of Training Strategies.

Experiment and Results
In this section, we present our experimental settings, cho-
sen datasets, and the corresponding performance of different
methods.

Data
In our research, we use three sets of data.

• D1. COVID-19 CT Segmentation from “COVID-19 CT
segmentation dataset”2.
This dataset contains 100 axial CT images of more than
40 COVID-19 patients with labeled lung area with ground-
class opacity, consolidation and pleural effusion.

• D2. COVID-19 CT Collection from Fan et al. 2020.
This dataset includes 1600 CT slices, extracted from 20
CT volumes of different COVID-19 patients. Since these
images are extracted from CT volumes, they do not have
segmentation masks.

• D3. Sample-Efficient COVID-19 CT Scans from He et al.
2020.
This data comprises 349 CT images in which 216 of them
are from COVID-19 patients. This dataset also does not
have segmentation masks and only has COVID-19 posi-
tive/negative labels.

For Infected Net model, we exploit all datasets for training.
For diagnosis COVID-19, we performed experiments on D3
dataset.

Settings
We implemented several experiments on a TITAN RTX GPU
with the Pytorch framework. The optimization used SGD
with a learning rate of 0.01 and is divided by ten after 30

2https://medicalsegmentation. com/covid19/



Method Accuracy F1 AUC
ResNet50 0.80 0.81 0.88

DenseNet169 0.83 0.81 0.87
Global, Infected, R50 0.83 0.81 0.89
Global, Heatmap, R50 0.82 0.83 0.88

Our Fusion, R50 0.84 0.82 0.91
Global, Infected, D169 0.86 0.83 0.91
Global, Heatmap, D169 0.85 0.82 0.89

Our Fusion, D169 0.87 0.84 0.92

Table 1: Performance between methods using Pre-trained
ImageNet. Blue and Red colour are best values for ResNet50
(R50) and DenseNet169 (D169).

epochs. We configured a weight decay of 0.0001 and a mo-
mentum of 0.9. For both DenseNet121 and ResNet50 we use
batch size of 32 and training for each branch 50 epochs with
input size 224×224. The best model is chosen based on early
stopping on validation sets. We optimize hyper-parameters
τ by grid searching with 0.75, which yields the best perfor-
mance on the validation set.

Evaluations
In this section, we evaluated our proposed system with differ-
ent settings and training strategies on the dataset D3. We also
compared with state-of-the-art baselines that used ResNet50
and DenseNet169 as backbones (He et al. 2020). The results
of both models were taken from the original paper.

Comparing with State of The Art Firstly, from both Ta-
ble 1 and Table 2, it is clear that our fusion method with
ResNet50 and DenseNet169 has significantly improved per-
formance compared to the baseline model in both types of
initial weights, from ImageNet and Self-Transfer Learning.
More specifically, when using pre-trained ImageNet with
ResNet50 backbone, our fusion method increases the accu-
racy from 80% to 84%, equals the accuracy of the baseline
model using ResNet50 with Self-Transfer Learning. Simi-
larly, for DenseNet169, by using pre-trained ImageNet, our
fusion method can improve the performance from 83% to
87% in terms of accuracy. This accuracy is even better than
the baseline method’s accuracy that uses the DenseNet169
backbone and Self-Transfer Learning. The outstanding per-
formance of our fusion method compared to the state-of-the-
art is consistent in AUC metric where the fusion method
with either DenseNet169 or ResNet50 backbone AUCs top-
ple their baseline AUC, especially using pretrained Ima-
geNet (ResNet50: 91% > 88% and DenseNet169: 92% >
87%). With Self-Transfer, our fusion method improves the
state-of-the-art method’s performance, especially with the
DenseNet169 backbone. Specifically, fusion’s measures in-
crease by 2% in all metrics accuracy, F1, and AUC.

Performance of Mixing Global and Local Branch Using
Infected information or Heatmap with the baseline can boost
the result by 3%. For example, applying Global-Infected
structure for ResNet50 improves the accuracy from 80%
to 83%, and the Global-Heatmap network increases the ac-

Method Accuracy F1 AUC
ResNet50 0.84 0.83 0.91

DenseNet169 0.86 0.85 0.94
Global, Infected, R50 0.84 0.83 0.91
Global, Heatmap, R50 0.87 0.84 0.92

Our-Fusion, R50 0.86 0.87 0.92
Global, Infected, D169 0.85 0.84 0.94
Global, Heatmap, D169 0.87 0.83 0.95

Our Fusion, D169 0.88 0.85 0.96

Table 2: Performance between methods using Self-Transfer.
Blue and Red colour are best values for ResNet50 (R50) and
DenseNet169 (D169).

Training Global-Infected Global-Heatmap Fusion
GHIF 0.82 0.81 0.84
GHI-F 0.83 0.84 0.86

G-H-I-F 0.85 0.87 0.88

Table 3: Accuracy of different training strategies on
DenseNet169 with Self-Trans. G: global branch, H: heatmap
branch, I: infected branch and F: fusion branch.

curacy from 83% to 86% when using pre-trained ImageNet.
However, compared to the global models, their improvements
from their baselines’ results are very similar in all sections.
The performance difference is slight, and there is no pattern
to conclude if either the Infected or Heatmap branch outper-
forms the other. Besides, the improvements from both global
methods across different backbone methods and types of ini-
tial weights are not as remarkable as the fusion method’s
improvement. This observation strengthens our decision to
combine both models in our fusion method to obtain all sig-
nificant features from each global model.

Performance of Training Strategies To validate the per-
formance of the proposed multi-step training in Algorithm 2,
we evaluated the performance with various strategies: train
all branches together (GHIF); train global, heatmap, and in-
fected together and next train fusion branch (GHI-F); and
train each branch sequentially (G-H-I-F). The accuracy of
these different training methods is presented in Table 3. The
table also shows the result of using a distinct combination
of branches in our system. The procedure which trained
branches together (GHIF and GHI-F) performs worse than
training separately (G-H-F-I) with a lower accuracy of about
3%, in which the latter configuration with every single part
was trained sequentially performed better other experiments.
This phenomenon might be due to the lack of the data as
training the whole complex network simultaneously with the
limited resources was not a suitable schema. Thus, training
each simple branch independently and then fusing them got
the best result. Moreover, it was clear that our fusion structure
achieved the highest score in all training runs compared to
using only two branches. Regarding the joint training setting
(GHIF and GHI-F), there were no significant differences in
the Global-Infected structure’s accuracy with 82% and 83%,



Figure 3: Visualizing learned features by t-SNE with final layers of the fusion branch. Each point is presented together with its
original scan, class activation map (CAM) representation, and infected regions (left to right order). For CAM colours, it applies
that the closer we get to red in the heatmaps, the stronger the activation is in the original image, which indicates that information
from that area contributes strongly to the final decision.

respectively. However, there was an increase of 3% in the
scores of the Global-Heatmap network. Both model struc-
tures obtained a similar performance with the changes at
roughly 1%. The fusion structure also improved 2% between
two training strategies. However, it still could surge to 88%
in the sequential configuration (G-H-I-F), which was also the
highest among all runs.

Visualizing Learned Features
Besides high performance, an ideal algorithm should be ex-
plainable to doctors about its connection between learned
features and the final decision of network. Such property is
critical, especially in medical applications; thereby the relia-
bility is the most concerning factor. To answer this question,
we validate our learned features by generating the class acti-
vation map (CAM) (Zhou et al. 2016) of the fusion branch
and applied t-Distributed Stochastic Neighbor Embedding
(t-SNE) (Maaten and Hinton 2008) method for visualization
by compressing 1644-dimensional features (DenseNet169
case) into a 3D space. Figure 3 depicts the distribution of
the pooling features of all images D3 dataset on a 3D plane
using t-SNE and CAM representations. Furthermore, infected
regions were also shown with their corresponding CT images.
The figure presented the COVID-19 and non-COVID points
were nearly distinct from others, which confirmed that the
features extracted from our fusion part are strongly associated
with this disease diagnosis.

By considering CAM color and its corresponding labels,
Figure 3 also showed that our system could focus on positions
within the lesion lung area for positive scans and vice versa,
the red heatmap regions locate outside the lungs for healthy
cases. This finding matches the clinical literature that lesion
regions inside the lung are one of the major risk factors for
the COVID-19 cases (Rajinikanth et al. 2020). Meanwhile,
the infected branch also provides useful information by dis-
covering unnormal parts occurring in the lungs (colored in

orange). While these lesions are rarely present or appear spar-
ingly in healthy cases, it is clear that this feature plays an
important factor in assessing the patient’s condition. Finally,
given data points that distributed close to the margin separate
the COVID-19 and non-COVID cases, the use of other tests
to compare results, as well as the experience of the clinician,
is a necessary factor in evaluating the actual condition of the
patient instead of just relying on the diagnosis of the model.
For this property, we once again understand the importance
of an explainable model. Without such property, we have a
high risk of making mistakes as using automated systems
while we could not predict all possible situations.

Conclusion
In this paper, we have presented a novel approach to im-
prove deep learning-based systems for COVID-19 diagnosis.
Unlike previous works, we got inspired by considering be-
haviors of radiologists when examining COVID-19 patients,
where all relevant information such as infected regions or
heatmaps of injury area are taken into account for the final
decision. Extensive experiments show that leveraging all vi-
sual cues yields improved performances of two baselines,
ResNet50 and DenseNet169, on both pre-trained ImageNet
and Self-Transfer initialization. Furthermore, our learned fea-
tures provides more transparency of the decision process to
end-users. As effective treatments are developed, CT images
may be combined with additional medically-relevant and
transparent information sources. In future research, we will
continue to investigate this in a large-scale study to improve
performance of proposed system towards explainability as an
inherent property of the model.
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